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A first-order approximation of optimal two-burn transfers between satellite orbits within a formation is presented
and discussed. The orbital transfer problem is based on the well-known fact that, to first order, such orbits are
elliptic, with centers at the target or offset in the in-track direction. The methodology allows for a target in a
(generally) elliptic orbit in its motion about the center of force. The solution obtained makes use of a transformation
of the problem to the reference frame of an auxiliary target in circular orbit in the inertial frame. The total required
| Av|is expressed in terms of the identifying parameters for the initial and final orbits in the formation, corresponding
to their respective sizes as measured by their minor axes, location of their centers, and their orientation. This
expression allows for numerical parametric studies in the case where the initial and final orbits are in the same or
parallel planes. It is shown that the optimal total |Av| depends on the relative sizes of the orbits and the distance
between their centers. When the initial and final orbits are concentric, four optimal two-burn transfers, all of the
same total | A v|, are identified. It is further shown that the optimal | A v| changes with the distance between the centers
of the orbits and attains a minimum when this distance is about 2.2 times the difference between the minor axes of the

orbits.

Introduction

HE use of spacecraft formations in various applications, ranging

from the study of the ionosphere [1] to telescopic observations
of Earth, making use of aperture synthesis [2], is a promising
technology that is bound to be of increasing importance. A survey of
satellite formation flying is given in [3].

A common way of defining and describing a satellite formation is
the use of a localized reference frame that is attached to one member
satellite of the formation (designated the target or leader) and to
consider the motions of the other member satellites (designated the
chasers or followers) in this reference frame. This approach allows
for the derivation of the equations of motion of the chasers in the
target’s reference frame. The equations of motion are useful for the
development of control schemes for the desired configurations and
for the implementation of formation-related maneuvers, such as
reconfiguration, relative stationkeeping, etc.

The first-order equations of motion for a chaser’s relative motion,
with respect to a target on a circular orbit about the center of force, are
the well-known linearized Hill’s equations, also known as the
Clohessy—Wiltshire equations [4]. Many contributions to the study
of the dynamics of satellite formations have been based on these
equations: to name a few, formation flying designs and their time
evolution are studied in [5]; the use of formation flying satellites for
aperture synthesis is studied in [2]; in [6], a study of correctional
maneuvers to mitigate the effects of perturbations such as the J,
effect, atmospheric drag, and solar radiation pressure is presented;
and control design for the Orion mission is studied in [7].
Furthermore, the Clohessy—Wiltshire equations are extended to
account for J, perturbations in [8]. In [9], a third-order analytical
solution to the Clohessy—Wiltshire equations, based on perturbation
methods, is given.

The Clohessy—Wiltshire equations have also been used for the
purpose of optimal control of satellite formations. For example, in
[10], mixed-integer programming is used for trajectory planning
with constraint avoidance, and more recently, in [11], studies of
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optimal multi-objective impulsive rendezvous are reported. In
addition, the optimal relocation of satellites using continuous thrust
is studied in [12].

The Clohessy—Wiltshire equations, though based on the
assumption that the target is in a circular orbit, may sometimes be
used as an approximate model for relative motion with respect to a
target in a low eccentricity orbit. However, a more accurate treatment
of this problem can be done by explicitly taking into account the
eccentricity of the target’s orbit. Thus, the equations of motion for the
case where the target is on an elliptic orbit are used in, for example,
[13-15] and the corresponding motions are studied. In [16], these
equations serve as a basis for optimal formation control. As is noted
in [16], the decrease of modeling errors that can be achieved by
accounting for the eccentricity of the target’s orbit leads to a
reduction of fuel costs.

Although equations of relative motion are important for the
implementation of control algorithms, one should keep in mind that
the relative motion itself is readily available as the difference between
the chaser’s and target’s motions with respect to the center of force
(i.e., by subtracting the position vector of the target from that of the
chaser), both of which are exactly known as solutions of the two-
body problem. This approach is taken in [17], in which initial
conditions for the relative motion that are accurate to second order in
the amplitude of the relative motion are given. Such initial conditions
considerably decrease the rate of drift of relative orbits.

When orbits within a formation are determined as the difference
between the chaser’s and target’s orbits, one can express the size
(minor and major axes) of the orbits in terms of the eccentricities of
the target’s and chaser’s inertial orbits. Also, the condition for the
periodicity of the relative motion (i.e., the absence of drift away from
the target) can be expressed in terms of a condition on the semimajor
axes of the underlying orbits (see, e.g., [17]).

The problem studied in this paper is motivated by the general
practical importance of transferring a satellite between two given
orbits that correspond to different relative motions with respect to the
target. For example, such a transfer may be made to change the size of
a synthetic aperture telescope or to make stationkeeping corrections
to the orbits of a formation that have drifted away from a target. Also,
the launching of secondary satellites from a target into orbit about the
latter, for example, a nanosatellite launched from a spacecraft for in-
orbit inspection of that spacecraft, is a special case of the same
problem (i.e., with zero initial amplitude and offset).

The specific aim of this paper is to determine optimal two-burn
transfers of a chaser between two orbits in a formation with respect to
a target. For this purpose, it is often convenient to think directly in
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terms of the orbits about the target, as opposed to the underlying
satellite orbits in the inertial frame. For simplicity of expression, the
orbits in the reference frame of the target will be referred to as relative
orbits in what follows. These periodic relative orbits (which are
always elliptic with center at the target) are parametrized in terms of
their size (semiminor axis), position of their center with respect to the
target (center offset), relative inclination with respect to the local-
vertical-local-horizontal (LVLH) coordinate system, as well as
relative right ascension. The resulting transfers are expressed (to first
order) in terms of the defining parameters of the initial and final orbits
(minor axis, center location, relative right ascension, and relative
inclination). Although such optimal transfer orbits can be determined
accurately through, for example, numerical calculations using the
relative equations of motion, the first-order analytical and numerical
results in this paper are useful for obtaining preliminary estimates of
the transfers. The problem is therefore analogous to that of deter-
mining optimal transfers, for example, between two circular orbits, in
the two-body problem; whereas numerical methods are important in
determining and implementing actual transfers, Hohmann transfers
give preliminary analytical estimates of these.

In the optimal transfer problem in this paper, it is assumed that the
target is generally in an elliptic orbit about the center of force, in the
inertial frame. In the solution of the problem, however, it is shown
that a transformation can be done to the reference frame of an
auxiliary target in circular orbit. This result is important in that it
makes available the analytical solutions of Hill’s equations for the
case of a target in circular orbit, for use in a problem with a targetin an
elliptic orbit. Using this approach, itis shown that, in the most general
case, the total required | Av| depends on two quantities: the difference
between the eccentricities of the orbits in the inertial frame that
correspond to the initial and final relative orbits, and the distance
between the centers of the initial and final relative orbits. A concise
expression of |Av| is derived, in terms of the aforementioned
quantities, that allows for the parametric study of | Av| with respect to
these quantities. In particular, for example, it is shown that | Av| has a
local minimum with respect to the difference in center offsets, and an
example is given on how this may be of use in practice.

As has been mentioned earlier, a relative orbit in a target’s
reference frame corresponds to an underlying inertial orbit. There-
fore, the optimal transfer between two relative orbits in a target’s
reference frame can be expressed as a transfer between the two
underlying inertial orbits. In that way, the problem being studied in
this paper is related to that of a transfer between two orbits about a
center of force, which is a central problem of astrodynamics that has
been studied by many authors (see, for example, [18-20]). In parti-
cular, the problem of optimal rendezvous, that is, where the time of
perigee passage is specified on the initial and final orbits, is studied
in, for example, [21-23]. However, all of these works assume a fixed
time of rendezvous, that is, the time of transfer is fixed a priori. By
contrast, in the current problem, the optimal time of transfer follows
as a result of the optimization.

Periodic Relative Orbits

It is well known that small periodic relative satellite orbits about a
given target are elliptic with a major axis equal to twice the minor
axis. These orbits are best described through the use of a LVLH
coordinate system with an origin at the target satellite. The x axis of
this coordinate system points directly away from the center of force,
whereas the y axis is perpendicular to the x axis, lies in the orbital
plane of the target, and points in the direction of an increasing true
anomaly. Lastly, the z axis completes the right-handed system.

The properties of relative orbits may also be described in terms of
parameters of the underlying inertial orbits about the center of force.
For example, it may be noted that periodic relative orbits appear
when the semimajor axis of the chaser’s inertial orbit a. is equal to
that of the target a;, as otherwise the periods of the orbits will be
different and drifting will result. In what follows, it will therefore be
assumed that

ar =dc =a (D

Also, it is shown in [17] that if the eccentricities of the target’s and
chaser’s orbits are e; and e, respectively, then the minor axis of the
elliptic relative orbit is |a§| with

5= \/ezc + e} —2ecercos Eg ?2)

and where E - is the eccentric anomaly of the chaser at the time when
the eccentric anomaly of the target is zero. Further, the center of a
relative orbit is generally offset in the y direction from the origin of
the coordinate system (the target) by a distance that will be denoted
here by y, (see Fig. 1). An offset for the center in the x direction is not
possible for an orbit that does not drift with respect to the target (see
[17]). Lastly, the relative orbit may be inclined with respect to the
fundamental plane of the LVLH coordinate system by an angle that
will be denoted here by y. This angle is also the angle between the z
axis and normal to the relative orbit’s plane.
Now, defining

3

n=

3=

the relative orbits may be expressed to first orderin §, y,, and y as (see
[17] for details)

x=—8acos¢ “4)
y =y, + 28asin¢ 5)
z=aysin(¢ — ¢) (6)

where ¢ = nt + ¢, is the angle to the position of the satellite
measured positive clockwise from the negative x direction (see
Fig. 1). Here, ¢, has been defined as the value of ¢ at time = 0. It is
shown in [17] that ¢ can be written in terms of parameters for the
underlying inertial orbit through

ecsin Eq,

(O]

¢y = arctan ————
er —eccos Eq

The angle ¢, is the value of ¢ at which the orbit will be crossing the
x—y plane such that the z coordinates of points will change from
negative to positive. It will be referred to as the relative right
ascension. This is indicated in Fig. 1 through the use of a dashed line
for the parts of the orbit below the x—y plane (i.e., z < 0).

In what follows, it is convenient to use canonical units (see, e.g.,
[24]) where the reference orbit is taken to be a circular orbit of
semimajor axis a. Thus, a distance of 1 DU will correspond to the
semimajor axis a. The gravitational parameter will have the value of
1 = 1(DU?/TU?) and consequently n = 1/TU. It follows then that
Eqgs. (4-6) can be written

x=—8cos¢ (8)

Fig. 1 Projection of a generic relative orbit on the x—y plane: dashed
line indicates parts of the orbit with negative values of the z coordinate.
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Y=y +28sin¢ )

<= VSIH(¢ - ¢20) (10)

It is worth noting that the relative orbit described previously
corresponds to an inertial orbit of a chaser that is close to the inertial
orbit of the target. Thus, with respect to another target close to the first
one, and in an elliptic orbit of eccentricity, say e7, the same inertial
orbit of the chaser would give rise to a relative orbit of minor axis

5= \/ezc—f—e’Tz—Zece’TcosECO (11)

For use in the next section, it is helpful to note that the relative
inclination y can also be determined by parameters pertaining to the
underlying inertial orbits of the target and chaser. It is shown in [17]
that y is the angle between the angular momentum vectors of the
chaser’s and target’s orbits (see Fig. 2). In addition, the relative right
ascension ¢, can be shown to be

$o=Eco+w (12)

where w is the angle between the line of intersection between the
chaser’s and target’s orbits and the eccentricity vector of the chaser’s
orbit, as shown in Fig. 2. Note that w is not defined when the two
inertial orbits are coplanar. In that case, w can be defined with respect
to the X axis.

Two-Burn Optimal Transfer

In the previous section, a parametrization of relative orbits was
described, which allows for the expression of these orbits in terms of
the offset y,, minor axis 8, relative inclination y, and relative right
ascension ¢,. An optimal transfer problem between two such orbits
can therefore be defined in terms of the initial and final values of §, y,,

2, 2

Zc

Xc

target’s orbit

chaser’s orbit

Fig. 2 Target’s and chaser’s orbits and associated coordinate systems.

¢, and y. In what follows, these values will be denoted by §,/6,,
Yo1/Yo2s Po1/ P02, and y; /v, on the initial/final orbits, respectively.
Figure 3 shows a generic transfer between two relative orbits about
a target in an (inertial) elliptic orbit, and is depicted in the target’s
LVLH coordinate system along with the required initial and final
impulsive Avs. The main objective is therefore to minimize

[AV] = [(AV),] + [(AV),] (13)
To obtain expressions for (Av), and (Av),, we note that

(Av); = v, — Voo (14)
(AV)y = vy — vy (15)

where v, and v, are the relative velocities on the transfer trajectory at
the beginning and the end of the transfer, respectively, vy, is the
relative velocity on the initial orbit at the beginning of the transfer,
and v,, is the relative velocity on the final orbit at the end of the
transfer.

Frame Invariance of the Transfer

As has been stated earlier, the relative orbits under consideration
are assumed to be about a target that, in its inertial motion, is in an
elliptic orbit, of given eccentricity, about the center of force.
However, in determining the required |Av| and, in particular, the
optimal | Av/| for a transfer between the relative orbits, it is possible to
describe the transfer from the vantage point of a different reference
frame. To that end, it is convenient in the current problem to consider
the transfer as being carried out in the LVLH coordinate system of a
target in circular orbit about the center of force, and with semimajor
axis equal to that of the actual target. This new target will be referred
to as the auxiliary target.

Using Eq. (11) with e, = 0 (for the circular auxiliary target orbit),
note that the same inertial orbits that gave rise to the initial and final
relative orbits in the reference frame of the actual target will give rise
to relative orbits in the reference frame of the auxiliary target. These
relative orbits will have semiminor axes

8y =ec (16)
and
8/2 =€ (17)

Clearly then, e and e, must first be found. This can be done using
Eqgs. (2) and (7) for a given set of values of §; and ¢;, on the initial
orbit, and §, and ¢, on the final orbit.

It is convenient to choose the auxiliary target’s orbit in such a way
that the values of y, on the initial and final orbits remain unchanged
after the transformation. As y, is a parameter that is determined by
the relative orientation of the chaser’s and the target’s inertial orbits
(see [17]), its value remains unchanged in the auxiliary target’s frame
if the latter is chosen, so that its true anomaly v; = 0 at the same time
as for the actual target. Furthermore, if the auxiliary target’s orbit is
chosen so that it is coplanar with the orbit of the actual target, the
relative inclinations y; and y, will remain unchanged after the
transformation. This follows from the definition of y in Fig. 2.

Yo2

Yo1 z

®o1 o1

ViQ

(Av)l

Voo

Fig. 3 Generic two-burn transfer between two relative orbits.



KETEMA 1511

Next, the relative velocities depicted in Fig. 3 will correspond to
new values in the reference frame of the auxiliary target. To see the
relation between the relative velocities in the two reference frames (of
the actual and auxiliary targets), one may start by noting that each
relative velocity corresponds to a velocity of the target, and one of the
chaser, in the inertial frame. For example, the inertial velocities for
the chaser Vj, and V4 that correspond to vy, and v in Fig. 3 are

Voo = vr($1) + Voo (18)
and
Vio=vr(¢1) + v (19)

where v;(¢,) is the inertial velocity of the target (in its elliptic orbit
about the center of force) at the instant of the initial burn, that is,
¢ = ¢,. It is therefore clear that another expression for the first
impulsive velocity change Av, is

AVI = V[() — VOO (20)

On the other hand, the preceding inertial velocities can also be
expressed in terms of the relative velocities with respect to the auxil-
iary target. Denoting these relative velocities as primed quantities

Voo = val(1) + vgo 2D

and
Vo =vald1) + vy (22)

where v, (¢, ) is the velocity of the auxiliary target at the time of the
first burn, that is, ¢ = ¢;. Defining

AV = vy — vy (23)

that is, the first velocity change in the reference frame of the auxiliary
target, and using Eqs. (21) and (22), it is clear that

Avi =V, — ¥y 24
and, using Eq. (20),
Av, = AV, (25)

Thus, the first required impulsive Av in the auxiliary target’s
reference frame is the same as what would be calculated in the actual
target’s reference frame.

A similar analysis for the relative velocities involved in the second
burn leads to

Av, = AV, (26)

that is, also the second impulsive velocity change is independent of
the reference frame used to describe the transfer.

In light of the preceding discussion, it can be concluded that the
optimization of the transfer between the initial and final orbits in the
given target’s reference frame may equivalently be carried out in the
auxiliary target’s reference frame. This would of course prompt one
to expect that the total |Av| must not depend on the initial and final
minor axes (i.e., §; and §,) of the relative orbits, as these clearly
change between reference frames. Indeed, it will be shown next that
the total |Av| only depends on the difference between these
quantities and not on each value. The advantage of choosing a target
in circular orbit for the new reference frame (the auxiliary target) is of
course that analytical expressions for the Avs are readily available as
the solution to the linearized Hill’s equations.

Transfer in the Auxiliary Target’s Reference Frame

It has been shown previously that an auxiliary target can be chosen
so that, for the corresponding periodic relative orbits,

x=—8cos¢ 27

y =Y+ 28 sin¢ (28)

z=ysin(p — ¢y) (29)

where & = e because the target is in circular orbit (e} = 0).

Therefore, the transfer is between a relative orbit of major axis 26}
to one of major axis 285, and the goal is to determine the values of ¢ at
the first and second Avs, ¢, and ¢, (see Fig. 3) that correspond to a
minimized |Av]|.

Denoting the positions of the first and second burns by r; and r,,
respectively, the initial velocity on the transfer orbit v,, can be found
from the requirement that, at the end of the transfer, at time 7, the
position should be

r,= q)rr(tf)rl + (Drv(tf)vto (30)
or
Vo= q)r_vl (rZ - q)rrrl) (31)

where ®,, and P, are the well-known Clohessy—Wiltshire matrices
(see, e.g., [25,26]). Note that, because n = 1, the time of flight of
transfer is

tp=¢r — ¢ — P2 — Poi (32)

where it is assumed (without loss of generality) that the initial time,
that is, at the first burn, is zero.

On the other hand, differentiating Eq. (30), the velocity on the
initial orbit at the time of the first burn is known to be

Voo = 8} sin¢i + 28| cos ¢, j + y; cos(¢p; — ¢.01)k (33)
and the first impulsive velocity change may be written
(AV); = v — Vg (34)
In the same way, the second impulsive velocity change will be
(Av); = vy — vy (35)
where
V=, )r + D,,(t)ve (36)

is the velocity on the transfer orbit at the time of the second burn 7,
and where ®,,(¢;) and ®,,(¢;) are the Clohessy—Wiltshire matrices
for the relative velocity. Also,

Vo =8y singyi + 28,n cos gy j + ya cos(dy — p.)k  (37)

is the velocity on the final orbit at the time of the second burn.

Role of the Time of Transfer

Considering Eqgs. (34) and (35), it is clear that the total |Av| will
depend on the positions and corresponding velocities on the initial
and final orbits at the times of the first and second burns, respectively.
In addition, the total Av will depend on the time between the first and
the second burns. It is shown in the Appendix that, in the case where
the initial and final relative orbits are in parallel planes, that is,
y1 = ¥, and ¢.g; = ¢.,, the total | Av| has a minimum when the time
of flight is chosen to be equal to ¢, — ¢, that is, when the initial and
final orbits have the same phase values or

o1 = P2 (38)

It is of course true that the transfer that is thus obtained
corresponds to a local minimum of | Av| and not necessarily a global
one. Nevertheless, transfers with values of | Av| smaller than the one
obtained will require larger transfer times.
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Expression for the Total | Av|
Based on the results of the previous section, it will be assumed in what follows that the time of transfer is

h—t =¢— ¢
and that
Vi="

Then, using Eq. (34) and making straightforward but significant simplifications shows that

/

" . 1

by =by ey —eq s

_ 2
(Av)y = | by =Dy ¢y —0y

0 0 0 0 Yor
Yo2

where
by = 3(¢1 — ) cosp, — 4sing, + 4sing,
1T 8+ 8cos(dr — o) + 3(¢1 — o) sin(gy — o)

—2cos¢; +2cos ¢,

T8+ 3(¢ — ¢2) cos ¢, sin gy + 8sin gy sin g, + cos ¢[8 cos ¢, + 3(—p; + ¢,) sin @]

_ =2+ 2cos(¢p; — ¢,)
—8 4 8cos(¢p; — ¢o) + 3(¢1 — ¢,) sin(¢; — ¢,)

C11

P sin(¢, — ¢)
2 -8+ 3(¢) — hy) cos py sin gy + 8sin; sin, + cos ¢ [8cos ¢, + 3(—¢, + ¢,) sin )]

and using Eq. (35) now gives (after simplification)

8/
by, =by cp —cpp 8’1
(Av)y = by —by c¢pn —cn 2

0 0 0 0 Yo
Yoz

where

b — —3(¢p; — ¢,) cos P, + 4sin¢g; — 4sin ¢,
27 —8 + 8cos(d, — $y) + 3(¢y — ¢,) sin(¢y — ¢,)

2cos¢; —2cosp,

e 3(¢, — ¢,) cos p, sin; + 8sing, sinp, + cos ¢[8 cos d, + 3(—¢; + ¢,) sin ¢y

o= =2+ 2cos(¢; — ¢»)
g 8cos(¢y — @) + 3(¢) — ¢,) sin(¢; — ¢,)

_ COS ¢, sin ¢; — cos ¢, sin ¢,
2= + 3(¢p; — ¢,) cos ¢, sin g, + 8sin ¢, sin @, + cos @;[8 cos ¢, + 3(—¢; + ¢,) sin¢,]

Using Egs. (41) and (46), it is then easy to verify that the magnitudes of the impulsive velocity changes are

[(AV) | = [A8]/b + 2b; - ¢ + 32

where
A§ =8, -6
_ Ayy
. P="75 (Aé #0)
with
Ayy = yo2 — Yoi

and where, for the simplicity of the expression, the following vectors have been defined:

b, :(bll’bZI)T

cy=(ci )’

(39)

(40)

41

42)

(43)

(44)

(45)

(46)

47

(48)

49)

(50)

(D

(52)

(53)

(54)

(55)

(56)
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so that
bt =0} + b3 (57)
ci=cf + 6 (58)
b-¢c;=bjc + bycy (59

Clearly, A§ # 0 must be assumed in Eq. (51); the case A§ = 0 will
be considered in a later section. In the same way,

AVl = A8 /b3 + 2b, - crp+ ¢ (60)
where
by = (b2 bzz)T (61)
¢y = (cp,0)" (62)
b3 =bi, +b% (63)
ci=ch+cx (64)
by ey =bpepn +bnen (65)

Now, considering Egs. (51), (60), and (13), it follows that

01

(%)

Fig. 4 Contour plot of (¢, $5).

-0.004 -0,

-0.0

|AV| = |Ad[n(¢1. ¢2. p) (66)

where

U(¢1,¢2,,0) = \/b% +2b1 .clp_{_c%pz

+ \/bg + 2b, - ¢, + €3 p? (67)

Thus, it is clear that the total |Av]| is directly proportional to the
difference in the x amplitude § between initial and final orbits, and
also depends on the ratio of Ay to Ag.

Numerical Analysis

It would now be possible to differentiate the expression for the
total | Av| to solve for the values of ¢, and ¢, that render the deriva-
tive zero. These values would correspond to a minimum value for
|Av|. However, the resulting expressions would be of a transcen-
dental nature in ¢, and ¢,, and therefore an analytical solution would
not be available; any solution would have to be obtained via
numerical methods.

On the other hand, if one is to use numerical methods to obtain the
solution, it is just as convenient to numerically find the minima of
n(¢1, ¢,, p) directly and as functions of the parameter p. In what
follows, these numerical calculations are performed through the use
of functions available in Mathematica [27].

Case of Coplanar Orbits

As a starting point for the numerical investigations, the case where
the initial and final orbits are concentric and coplanar is studied in this
section. Note then that p = 0. Therefore, for the sake of brevity, one
can define a new function through

No(P1, 2) = 1(y, ¢, 0) (63)

Figure 4 shows a contour plot of the function ny(¢;, ¢,) for the
range of values of ¢; € (—m, ) and ¢, € (0, 27). There are in this
figure four local minima, labeled Ay, By, Cy, and D,. The value of
no(¢1, ¢,) at these local minima has been determined numerically
to be 0.860032. The minima are at Ay: (P, p,) = (—3.02248,
1.21415), B(): (¢1,¢2) == (_121415,302248), C(): (¢l’¢2)=
(0.119111,4.35574), and Dy: (¢, ¢,) = (1.92744, 6.16407).

It may be noted that the minima lie on lines ¢; + ¢, = constant
and at values of A¢ = ¢, — ¢, symmetrically located about A¢ = 0.

The two minimum-|Av| transfers in the LVLH frame that
correspond to the minima A, and B, in Fig. 4 are exemplified in
Fig. 5, where the initial and final orbits are taken to be such that
8, =0.001 and §, = 0.002. In the same way, Fig. 6 shows examples
of transfers corresponding to points C;, and Dy, in Fig. 4, where again
4, = 0.001 and §, = 0.002.

joz 0004 Z

-0.004 -0,

-0.0

Fig. 5 Optimal transfer orbits (thick lines) corresponding to points A, and B, in Fig. 4. Initial orbit has §, = 0.001 and final orbit has é, = 0.002.
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0.0

—-0.004 .002 0.004

-0.004 -0002 t . 0.004

-0.

Fig. 6 Optimal transfer orbits (thick lines) corresponding to points Cy and D, in Fig. 4. Initial orbit has §; = 0.001 and final orbit has §, = 0.002.

Relative Orbits in Parallel Planes: p # 0

In the case where p is not zero, that is, the initial and final relative
orbits are not concentric, but still have the same inclination and right
ascension, the optimal transfer between relative orbits can again be
obtained numerically for varying values of p. As p varies, the minima
of n(¢,, ¢,, p) trace out paths in the ¢, —¢, plane, which are shown in
Fig. 7 for p in the range (—5, 5). In further explaining the figure, it is
convenient to refer to the curves that represent the evolution of the
local minima for varying values of p by A(p), B(p), C(p), and D(p),
such that A(p) is the path that goes through A, at p = 0, B(p) is the
path that goes through B at p = 0, etc. Then, one can first verify that
the points Ay, By, Cy, and D, are the same points as the minima in
Fig. 4.

Case p>0

When the value of p is increased from zero, points B(p) and C(p)
will travel toward the points labeled B,- = B(27) and C,- = C(27)
(i.e., these points correspond to p approaching a value of 2 from
below). It is worth noting that p = 2 means that initial and final orbits
intersect at ¢ = 7 rad. The local minima B(p) and C(p) cease to exist
for values of p = 2. This is illustrated in Fig. 8, which shows a
contour plot of n(¢;, ¢,, p) at p = 2. The location of B,- and C,-
are approximated by By-: (¢;,¢,) = (—1.571,3.00) and
Cy-: (¢, ) = (0.0,4.71), respectively. These values are calcu-
lated for p = 1.999.

As would be expected, the value of (¢, , ¢,, p) at the local minima
B(p) and C(p) is itself a function of p. Numerical calculations show
that, for a given p, this value is the same on B(p) and C(p), and may
therefore be denoted (1,i,) g (0). Figure 9 shows the dependence of

(nmin)BC(p) on p. Note that (nmin)BC(z_) ~ 1.

¢1 .
D"'l
2+ Dy
D,
B 60.C
1 n R 1 T n n 1 n 3
2 K4 6 02
By
N B
A, [ Ao
% oo
Al Ay

Fig. 7 Dependence of local minima of (¢, ¢,, p) on p.

On the other hand, points A(p) and D(p) trace out their own curves
inthe ¢, ¢, plane as p increases from zero. Thus, the two points start
at Ay and D, and travel along their respective paths until they reach
A,, = A(1.63) and D,, = D(1.63). A further increase of p causes the
local minima to travel toward the points labeled A, = A(1.85) and
D, = D(1.85), respectively. Increasing p past the value of 1.85
causes the local minima to now reverse direction and move back
toward and past the points A, = A(2.13) and D,, = D(2.13),
respectively.

As in the case of the local minima B(p) and C(p), the value of
n(¢,, ¢,, p) at the local minima A(p) and D(p) is itself dependent on

¢

w
Y

Val7

Fig. 8 Contour plot of (¢, ¢,,2).

2

| (Mmin )BC (P)

1.0
0.9
. .
1 2 p

Fig. 9 Dependence of minimum |Av| on p for points B and C.
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(mmin )AD (P)|
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Fig. 10 Dependence of minimum |Av| on p for points A and D.

p, and has the same value at the two points A(p) and D(p) for a given
p. Denoting this minimum value by (1,i,)4p (p), Fig. 10 shows its
dependence on p in the interval p € (=2, 5). Note that | (1min) ap (0) |
itself has a minimum at p ~ 2.2 with a value of 7, = 0.5.

Case p <0

A decrease in p from p = 0 causes the local minima to trace their
respective curves in Fig. 7 in the opposite direction to that described
for the case of p > 0. First, considering points A(p) and D(p), these
points will travel from A, and B at p = 0 toward the points A_,+ =
A(=2%) and D_,+ = D(=2"), respectively. The local minima A(p)
and D(p) cease to exist for p = —2. Note that p = —2 corresponds to
the case where the initial and final orbits intersect at ¢ = 0. The
location of the critical points are approximated by A_,+: (¢, ¢,) =
(—3.00,1.571) and D_,+ = (¢, ¢,) = (1.571,5.99), respectively,

0.006

0.002

-0.002 -0.001 0.001 0.002 4

-0.002 -

Fig. 11 Optimal deployment of relative satellite in the target’s
reference frame.

which are calculated at p=—1.999. At both these points, the
corresponding value of the function 1(¢;, ¢,, 1.999) ~ 1.

For a given p, n(¢,, ¢,, p) has the same value at the local minima
A(p) and D(p), which may therefore be denoted (7in)an(0)-
Figure 10 shows the dependence of |(17min)ap (£)| On p in the interval
p € (=2,5), and, in particular, how a decrease in p increases
|(nmin)AD (IO)|

On the other hand, points B(p) and C(p) trace out their own curves
in the ¢;—¢, plane for p decreasing from a value of zero. Thus, the
two points start at B, and C,, and travel along their respective paths
until they reach B,, = B(—1.63) and C,, = C(—1.63), where they
merge. A further decrease of p causes the now single local minimum
to travel toward the point labeled B, = B(—1.85). Decreasing p
further causes the local minimum to now reverse direction and move
back toward and past the point B,, = B(—2.13).

For a given p, n(¢;, ¢,, p) has the same value at the local minima
B(p) and C(p), which may therefore be denoted (7min)pc(p)-
Figure 9 shows the dependence of |(1,i,) 5c(0)| on p in the interval
p € (—=5,2). Note that |(min) gc(p)] itself has a minimum value of
0.5atp~ —2.2.

Example

It was noted in the previous sections that |(7y.)ap(p)| and
| (Mmin) 5c(0)| (and therefore the corresponding | Av|s) are smallest at
p=2.2and p = —2.2, respectively. This result can be directly used
to advantage in problems where p is a parameter that can be varied.

As an example, consider a situation where a relative satellite is to
be deployed from a spacecraft in an elliptic orbit with a requirement
on the relative orbit that the largest distance from the launching
spacecraft (the target) to the relative satellite (the chaser) is a given
value ad, where a is the semimajor axis of the target’s orbit, and that

$=0 (69)

Then, Fig. 9 suggests that there is a value of § (i.e., amplitude of the
relative orbit) that would correspond to p = 2.2 or p = —2.2, and that
would therefore be most economical in terms of the required | Av|. To
determine this value, first note that, because the satellite is being
deployed from the target, §; = y,; = 0, that is, in the reference frame
of the target, the initial semiminor axis and center offset are zero. The
requirement on the relative orbit is then (in terms of variables defined
in the target’s frame)

d=yp + 26, (70)

or, using Eq. (2),

d=yor +2\/e2 + & — 2ecercos Ecy (71
The change in the position of the center of the orbit is therefore
Ay =y — Yoi = Yo (72)
Therefore, using Eq. (53),
Ay =yp = pAd (73)

Here, Aé, defined in Eq. (52), is the difference in amplitude between
the initial and final relative orbits in the auxiliary target’s frame.
Using Egs. (7) and (69), it follows that E, = 0 and Eq. (2) gives

B3 B E

20 25 30 ¢ 2

Fig. 12 Contour plot of (¢, ¢,,0).
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Table 1 Set of local minima of n(¢, ¢,, 0) depicted in Fig. 12

Local minima of (¢, ¢,, 0)

o ®, 1(¢1, $,.0)
B, —1.214 3.022 0.8600
B, —1.442 9.388 0.9406
B, —1.491 15.686 0.9620
Bs —1.512 21.98 0.9720
B, —1.525 28.26 0.9779
8 =er 74)
8 =ec (75)
and it follows that
As=08,—68 =ec—er (76)
This, together with Eq. (73), now gives
Yoo = plec — er) amn
and, using Eq. (71) with Eq. (69),
d=plec—e)+2V(ec—er) (78)
or, defining § = e — ey,
d = pé+2|§| (79)
Solving for § with p = 2.2 now gives
§=d/4.2 (80)

An implementation of the corresponding transfer for the local
minimum at D(2.2) gives ¢; = 3.233 and ¢, = 6.19 and is shown in
Fig. 11 where d = 0.001.

Large Transfer Angles

In studying the local minima of |1(¢;, ¢,, p)| numerically in the
previous sections, it was necessary to limit the range of values
considered for ¢, ¢,, and p. The intervals ¢, € (—m, ) and ¢, €
(0,27) were chosen with the aim of considering transfers of
A¢p = ¢, — ¢, <2m, as a practical first step.

Itis, however, of interest to consider larger values of A¢ to discern
the effect of larger transfer angles on the required | Av/|. In doing so, it
is convenient to hold ¢, within the range (—, ) while letting ¢,
increase to larger values, without loss of generality. Thus, as ¢,
increases, the overall structure of the contours of the function
(o1, ¢, p) in ¢;—p,, and in particular the “staircase” structure
enclosing the local minima, is repeated as shown in Fig. 12. However,
itis clear that the widths of consecutive staircases enclosing the local
minima decrease for increasing values of ¢,. This suggests that the
values of Av at the enclosed local minima should approach the value
of 1 (the value on the staircase), barring a discontinuity at that point.
Indeed, this is easily verified for the local minima. As an example,
starting with the local minimum By, consider the horizontal row of
local minima B,—B, in Fig. 12. The exact locations of these minima
and the corresponding value of 7,;;, are given in Table 1.

Thus, while the value of ¢, increases, the value of |ny| is
increasing and approaching unity. A similar result is obtained for the
other local minima A, C, and D.

Dependence of the Local Minima on p

As in the case of smaller transfer angles, A¢ < 2, the locations of
the local minima and corresponding value of Av for larger values of
A¢ will generally depend on the value of p.

This dependence can be studied numerically in just the same way
as was done for the case of A¢ < 27 and results in diagrams that trace
out the positions of the local minima in the ¢;—¢, plane, similar to
those in Fig. 7. However, the value of p for which the various critical

points on the diagrams are reached are generally different from those
in the case of the minima A(p), B(p), C(p), and D(p), which were
considered earlier. Also, it is important to note that the value of p,
where n(¢,, ¢,, p) is minimum along a certain path, depends on the
specific path. For example, if one considers the local minimum B, (p)
and the corresponding minimum value of |1(¢;, ¢, p)|, one obtains
Fig. 13 (solid curve) where the corresponding diagram for local
minimum B, (p) is shown in the same diagram (dashed curve). The
conclusion from this diagram is that if p < 5 (approximately), that s,
if the distance between the centers of the initial and final orbits is not
larger than roughly 5 times the difference in their semimajor axes,
then the smaller A¢ corresponding to B (p) is more efficient than the
longer one corresponding to B (¢).

Pure Shift of Orbits

One possible type of transfer of relative orbits is where the size and
orientation of the orbits remains unchanged while the center is shifted
along the y axis, that is, the case where A§ =0 and Ay # 0. The
requirement A§ = 0 makes it necessary to redefine n(¢;, ¢,, p), as
the variable p is no longer defined. To this end, using Eqgs. (41) and
(46) with Eq. (13), and keeping in mind that §; = &), gives

avi=iai( Ve a) +yard o

Substituting the expressions for c¢;;, ¢, ¢, and ¢y, and
simplifying gives

|[Av| = |Ay|n,(Ag) (82)
where
Ap=¢,— ¢, (33)
and where
10 —6cos Ag
Ag) = 84
n:(A9) \/ (3Apcos Ag— 8sin Ag)> (84)
Nmin
N Lof
\\\ 09F
\\\ /,’E).s F
) < /// 07f
\\‘\\ ,/, 0.6

Fig. 13 Comparison of minimum 7 (¢, ¢,, p) on local minima B, (p)
(dashed) and B, (p) (solid).

(A @)

L L L L I L

5 10 15 20 25 30 A ¢

Fig. 14 Plot of n,(A¢) in the case where the change in § between the
initial and final orbits is zero.
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AV = {(()’01 — Yo2) cos() + 2{e, sinf3 (1 — 2u — v)] + ¢, sin[% (t+2u—v)]})?

[3tcos(}) — 8sin(d)?

1
+ [8 cos(?) + 3tsin(r) — 8]

5 |:2y01 — 2y02 — 2(yo; — Yop) cos(t) — 3eztcos(l —u— g) + 3e1tcos(u - ;)

+ deysin( 1 U) 4 e, sin(u—2) — e, sin( 14+ u—2) + deysin(u+ 2) |
€, S u > € S u > €1 S u B €, S u 5
. v . v 2)%
+ csc?(1) |y, sin u—§+w01 + y, sin z—u_z_woz

n {4Siﬂ2(é)((ym — Yoo) cos(3) + 2{e; sinf3 (r — 2u — v)] + e, sinf3 (1 + 2u — v)]})*

[8 cos(?) + 3tsin(z) — 8]

1
+ [8 cos(z) + 3tsin(r) — 8]

v
|:—2)’0| + 202 + 2(Yo1 — Yoz) cos(2) + 3€|ICOS(’ +u— 5)

- 3eztcos(u +§) + 4e, sin(z— u —g) + 4e, sin(u —%) —4e, sin(z +u —%)

2 2y 1
+ 4de, sin(u + %)] + csc(f) |:y1 sin(t +u —g + wm) -V sin(u + % + woz)] }2 (A3)

has been defined. Thus |Av|, in the case where there is no change in
amplitude of the relative orbit, only depends on the angular
displacement.

Figure 14 is a plot of 1,(A¢) as a function of A¢. It is clear from
the figure that the value of 1,(A¢) at consecutive local minima will
alternately increase and decrease with increasing A¢. However, the
overall tendency (for large increases in A¢) is for ,(A¢) to decrease.

Conclusions

In this paper, it has been shown that transfers between relative
orbits with respect to a target in elliptic orbit can be studied through a
convenient transformation of the problem to the reference frame of an
auxiliary target in circular orbit. The method simplifies the problem
significantly by allowing the use of the well known Clohessy—
Wiltshire solutions to the problem of linear relative motion. The
transformation itself is based on the expression of the relative motion
between satellites as the difference between their respective motion
about the center of force, in the inertial frame. This is in contrast to
studying the relative motion as a solution to equations of motion
obtained in the reference frame of the target.

Optimal transfers between the relative orbits have been
characterized in this paper by the values of the amplitude (size),
center location (offset), relative right ascension, and relative
inclination, of the initial and final relative orbits. In the case of
concentric relative orbits, four optimal transfers, all corresponding to
the same value of the total | Av|, for a given difference in minor axes,
have been identified. It is further shown that this value of |Av|
changes continuously with the distance between the centers of the
initial and final orbits, and that it has a minimum when the distance
between the centers is 2.2 times the difference in the minor axes.

Appendix: Optimal Time of Transfer

The total |Av]| is the sum of the magnitudes of the two impulsive
velocity changes givenin Egs. (34) and (35). These expressions are in
terms of the value of the angle ¢ at the times of the initial and final
burns ¢; and ¢, and the time of flight. It is convenient to define two
new variables through

u =31+ ¢2) (AT)

v=¢2 — ¢l (A2)

In terms of u and v, the expression for | Av| becomes

Now, for a minimum of |Av|, a necessary condition is that the
derivatives of |Av| with respect to the variables u, v, and ¢ vanish.
Obtaining these derivatives is straightforward, however, tedious. It
can be shown that, under the assumption y; =y, and wy =
wg =0,

AL _ (e, — ep)glut) (A4)
Ju

IV _ (o) + en)g(u.r) (AS)
v

for t = v and where

2
gu, )= {8 cos(u) sin(%) [(ym — Vo) cos(%)

+2(e; — ¢3) sin(u)] + |:—2)’01 + 2y02
t
+2(yo1 — Yo2) cos(?) + 3(e; — ez)tcos(i + u)
.1 . [t . [t
—4e, sm(i— u) + 4e, sm(E— u) —4e, sm(i + u)
+ 4e, sin t—f— 4 cos ! 4 cos t—i—
ersin| 5 +u S U S tu
- 3tsin(% + u)i|}/(—8 + 8cos(r)
. ) . [ 1)? t
+ 3tsin(z)) 4sin 3 (Vo1 — Yoo) cOS 3
2
+2(e; —¢3) sin(u)] + |:—2)’01 + 2y02 + 2(yor — Yoz) cos(?)
1 [t
+3(e; — ez)tcos(— + u) —4e, sm(— - u)
2 2
. [t L[t
+ 4e, sin E—u —4e, sin §+ u
(1 2 . :
+ 4de, sm(i + u)j| }/(—8 + 8cos(t) + 3t s1n(t))2)
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+ (2 cos(u) |:(y01 — Yo2) €08 (%)

. t (]
+2(e; —ey) sm(u)]/[Stcos (5) -8 51n(5)i|
+ [4005(%— u) — 4cos(% + u)

+ 3tsin(% - u):| [—2(y01 — Yo2) cos(t)

t
+ 3(e, — ez)tcos(i - M) +2(Vo1 — Yo2)

—2(e; —e,) sin(% - u) —2(e; —e,) sin(% + u)]

/(—8 + 8cos(f) + Stsin(t))Z)/{ |:(y01 — Y2) COS (%)
. 2 t .\ ]?

+2(e; —ey) sm(u)] /|:3lcos (5) — 8sin (E)i|

+ |:—2YU1 + 2y02 + 2(¥o1 — Yo2) cos ()

t t
+3(—e; + ez)tcos(i — u) + 4de, sin(i - u)

de. sin( ! de- sin( densin( ! 2
—4e, sin E—u + 4e; sin E—{—u —4e, s1n §+u
/(—8 + 8cos(t) + 31‘sin(t))2}7 (A6)

Thus, the condition ¢ = v renders Eq. (A4) or Eq. (A5) equivalent,
leaving two equations, that is, for example, Eq. (A4) and
d|Av| -0
at

(AT)

The conclusion to be drawn is therefore that the total |[Av| has a
minimum for # = v, or when the time of flight is equal to ¢, — ¢,
where of course the specific value of # must now be found together
with the corresponding value of u from Eqs. (A4) and (A7).
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